Name:
Student Number:
No books or notes allowed on this exam.
Find the absolute maximum and absolute minimum of

$$
f(x)=x+2 \cot ^{-1} x
$$

on the interval $[0,4]$. Use sentences to justify your answer (don't just circle a number, but use the reasoning we learned in class.)

Solution : [J. Stewart, Page 278] The Closed Interval Method To find the absolute maximum and minimum values of a continuous function f on a closed interval $[a, b]$:

1. Find the values of f at the critical numbers of f in (a, b).

Set $f^{\prime}(x)=0$.
Solve for the critical numbers:

$$
\begin{aligned}
f^{\prime}(x)=1+2 \cdot\left(-\frac{1}{1+x^{2}}\right) & =0 \\
1 & =\frac{2}{1+x^{2}} \\
1+x^{2} & =2 \\
x^{2} & =1 \Longrightarrow x= \pm 1 .
\end{aligned}
$$

Since -1 is not in the domain, the interval $[0,4]$, we have $x=1$ as our critical number. Plug in $x=1$ in f. We have

$$
f(1)=1+2 \cot ^{-1} 1=1+2 \cdot \frac{\pi}{4}=1+\frac{\pi}{2} .
$$

2. (3 points) Find the values of f at the endpoints of the interval.

$$
\begin{aligned}
& f(0)=0+2 \cot ^{-1} 0=\pi . \\
& f(4)=4+2 \cot ^{-1} 4 .
\end{aligned}
$$

(No need to simplify further.)
3. (1 point) The largest of the values from Steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.
To get the credit in this part, you only need to state the step in sentences. However, there is a way to find the largest value and the smallest value without using the calculator. Note that

$$
1+\frac{\pi}{2}<\pi<4+2 \cot ^{-1} 4
$$

The first inequality is true because $1<\frac{\pi}{2}$. The second inequality is true because $\pi<4$ and $0<\cot ^{-1} 4$.
Therefore, $f(1)$ is the absolute minimum and $f(4)$ is the absolute maximum.

